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Abstract- Emotion recognition through 

speech has gained significant attention in 

the domains of human-computer 

interaction, artificial intelligence, and 

affective computing. This paper explores 

the development of a speech emotion 

recognizer using deep learning techniques. 

By leveraging features like Mel Frequency 

Cepstral Coefficients (MFCCs) and 

employing Convolutional Neural 

Networks (CNNs) and Long Short-Term 

Memory (LSTM) networks, the proposed 

system classifies emotions such as 

happiness, sadness, anger, and neutrality. 

We compare our model’s performance on 

publicly available datasets such as 

RAVDESS and CREMA-D. The model 

achieves high accuracy and demonstrates 

potential for integration into real-time 

applications such as virtual assistants, 

therapy bots, and emotion-aware dialogue 

systems. 

Keywords- Speech Recognition, Emotion 

Detection, Deep Learning, CNN, LSTM, 

MFCC, Affective Computing, Human-
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I. Introduction 

Speech is one of the most fundamental and 

natural forms of human communication. It 

not only conveys information through 

words but also expresses a wide range of 

human emotions such as happiness, 

sadness, anger, fear, and surprise. The 

ability to detect these emotional states 

from speech has become increasingly 

important in enhancing human-computer 

interaction, creating emotionally 

intelligent systems, and improving user 

experience. This process is known as 

Speech Emotion Recognition (SER), and it 

has become a vital component in various 

applications such as virtual assistants, call 

center automation, gaming, and mental 

health monitoring (El Ayadi, Kamel, 

&Karray, 2011).Traditional SER systems 

relied on manually engineered features like 

pitch, energy, and formants, combined 

with classical machine learning algorithms 

such as support vector machines or 

decision trees. While these systems 

showed some effectiveness, they often 

struggled with generalizing across 

different speakers, languages, and acoustic 

environments. Moreover, handcrafted 

features were limited in their ability to 

capture the complex temporal and 

frequency patterns inherent in emotional 

speech (Zhang & Zhang, 2020). 

With the rise of deep learning, especially 

Convolutional Neural Networks (CNNs) 

and Recurrent Neural Networks (RNNs) 

such as Long Short-Term Memory 

(LSTM) networks, the performance of 

SER systems has significantly improved. 
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These models can automatically learn and 

extract meaningful features from raw or 

minimally processed speech signals, 

leading to greater accuracy and robustness 

(Trigeorgis, Tzimiropoulos, Pantic, & 

Zafeiriou, 2016). The integration of CNNs 

for feature extraction and LSTMs for 

modeling temporal dependencies has 

proven particularly effective. 

In this research, we propose a hybrid 

CNN-LSTM architecture for emotion 

recognition from speech. The model is 

trained and validated using two well-

known benchmark datasets: the Ryerson 

Audio-Visual Database of Emotional 

Speech and Song (RAVDESS) and the 

CREMA-D (Crowd-sourced Emotional 

Multimodal Actors Dataset), both of which 

contain high-quality recordings of actors 

expressing various emotions (Ravdess, 

2017; Crema-D, 2017). Our objective is to 

demonstrate that combining CNNs and 

LSTMs using Mel Frequency Cepstral 

Coefficients (MFCCs) as features results 

in improved emotion classification 

performance. This paper presents the 

system architecture, training methodology, 

and evaluation metrics, along with a 

discussion of the results and potential real-

world applications. 

II. Literature Review 

Speech Emotion Recognition (SER) has 

been an active area of research for over 

two decades, combining concepts from 

signal processing, machine learning, and 

human psychology. The goal is to detect 

emotional states from speech signals by 

analyzing acoustic and prosodic features. 

Early work in this field primarily relied on 

traditional machine learning models and 

hand-crafted features, but recent advances 

have shifted the focus toward deep 

learning techniques, which have shown 

superior performance and generalization 

capabilities. 

El Ayadi, Kamel, and Karray (2011) 

provided a comprehensive overview of 

machine learning approaches used in SER. 

Their review covered various classifiers 

such as Support Vector Machines (SVMs), 

Hidden Markov Models (HMMs), and 

Gaussian Mixture Models (GMMs). While 

these models performed reasonably well 

with small datasets, they required 

extensive feature engineering and often 

lacked robustness when applied to real-

world, noisy environments. 

The introduction of deep learning marked 

a paradigm shift in SER. Trigeorgis et al. 

(2016) proposed an end-to-end model 

using Convolutional Neural Networks 

(CNNs) combined with Long Short-Term 

Memory (LSTM) networks. This 

architecture was capable of automatically 

learning hierarchical representations from 

raw audio, thus reducing the dependence 

on manual feature extraction. Their model 

outperformed traditional methods on 

several benchmark datasets, highlighting 

the potential of deep neural networks in 

this domain. 

Another important advancement was the 

use of Mel Frequency Cepstral 

Coefficients (MFCCs) and spectrograms 

as inputs to deep models. MFCCs, which 

mimic the human ear’s perception of 

sound, have become the standard input for 

most SER systems due to their ability to 

capture the short-term power spectrum of 

speech (Zhang & Zhang, 2020). 

Spectrograms, which visualize frequency 
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content over time, are also commonly used 

with CNNs to extract meaningful features. 

Regarding datasets, the availability of 

high-quality emotional speech databases 

has been crucial for training and 

evaluating SER models. The RAVDESS 

(Ryerson Audio-Visual Database of 

Emotional Speech and Song) provides 

professionally recorded samples of actors 

expressing eight different emotions with 

clear articulation and minimal background 

noise (Ravdess, 2017). Similarly, the 

CREMA-D (Crowd-sourced Emotional 

Multimodal Actors Dataset) includes 

recordings from diverse speakers and 

provides ratings of emotional intensity 

from human annotators, which adds an 

element of subjectivity to the data and 

helps train models that are more aligned 

with human perception (Crema-D, 2017). 

Zhang and Zhang (2020) also emphasized 

the importance of transfer learning and 

cross-corpus evaluation in SER. Many 

models perform well on the dataset they 

are trained on but fail to generalize to 

other datasets. This has led researchers to 

explore domain adaptation techniques and 

larger, more diverse datasets to improve 

real-world applicability. 

In summary, the literature shows a clear 

trajectory: from handcrafted features and 

classical models to deep learning 

architectures that leverage automatically 

learned features and large emotional 

datasets. The integration of CNNs and 

LSTMs, the use of MFCCs and 

spectrograms, and access to reliable 

corpora like RAVDESS and CREMA-D 

have collectively advanced the field and 

set a strong foundation for further 

innovation. 

III. Methodology 

This study proposes a hybrid deep learning 

model combining Convolutional Neural 

Networks (CNNs) and Long Short-Term 

Memory (LSTM) networks to recognize 

emotions from speech. The methodology 

is divided into several key phases: dataset 

selection, data preprocessing, feature 

extraction, model architecture design, 

training, and evaluation. Each step is 

critical in ensuring the system's 

performance, accuracy, and ability to 

generalize across various emotional 

expressions. 

3.1 Dataset Selection 

Two widely used and publicly available 

datasets were selected for this research: the 

RAVDESS (Ryerson Audio-Visual 

Database of Emotional Speech and Song) 

and the CREMA-D (Crowd-sourced 

Emotional Multimodal Actors Dataset). 

These datasets were chosen due to their 

high-quality recordings and diverse 

emotional content. The RAVDESS dataset 

includes 24 professional actors vocalizing 

two statements in eight different emotions: 

calm, happy, sad, angry, fearful, surprise, 

disgust, and neutral (Ravdess, 2017). 

CREMA-D complements this by offering a 

larger pool of actors and emotional ratings 

collected from multiple human annotators, 

which adds subjectivity to the emotional 

expressions (Crema-D, 2017). 

3.2 Data Preprocessing 

The audio data was first normalized to 

ensure consistency in volume levels and 

eliminate background noise. All files were 

resampled to a fixed sampling rate (e.g., 

22,050 Hz) to maintain uniformity. The 
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audio clips were then trimmed or padded 

to a fixed duration to match the input 

shape required by the CNN-LSTM model. 

These preprocessing steps ensure that the 

data is clean, standardized, and suitable for 

feature extraction. 

3.3 Feature Extraction 

Mel Frequency Cepstral Coefficients 

(MFCCs) were chosen as the primary 

feature set. MFCCs are widely used in 

speech processing due to their ability to 

mimic human auditory perception. They 

represent the short-term power spectrum of 

a sound and have been shown to be 

effective in distinguishing between 

emotional tones (Zhang & Zhang, 2020). 

In this study, 40 MFCCs were extracted 

from each audio clip using a sliding 

window technique, resulting in a time-

series representation of the speech signal 

suitable for input to the neural network. 

3.4 Model Architecture 

The proposed model consists of a hybrid 

architecture that combines CNN and 

LSTM layers. The CNN layers act as 

feature extractors, capturing local time-

frequency patterns in the MFCC input. 

These features are then passed to the 

LSTM layers, which model the temporal 

dynamics of speech, such as changes in 

tone and rhythm over time. This approach 

allows the system to learn both spatial and 

sequential representations, which are 

critical for emotion recognition (Trigeorgis 

et al., 2016). 

The model architecture is as follows: 

• Input Layer: Takes MFCC features 

with shape (timesteps, MFCC 

coefficients) 

• CNN Block: Consists of convolutional 

layers followed by ReLU activations 

and max-pooling 

• LSTM Block: One or more LSTM 

layers to capture temporal 

dependencies 

• Dense Layer: Fully connected layer 

with dropout to prevent overfitting 

• Output Layer:Softmax activation for 

multi-class emotion classification 

3.5 Model Training 

The model was implemented using the 

Keras deep learning library with a 

TensorFlow backend. Categorical cross-

entropy was used as the loss function, and 

the Adam optimizer was chosen for 

efficient gradient-based learning. The 

model was trained for a set number of 

epochs (e.g., 50), with early stopping 

applied to prevent overfitting. A stratified 

train-validation-test split was employed to 

ensure balanced representation of each 

emotion in all subsets. 

3.6 Evaluation Metrics 

Model performance was evaluated using 

standard classification metrics including 

accuracy, precision, recall, and F1-score. 

A confusion matrix was also generated to 

analyze class-wise performance and detect 

potential misclassifications, especially 

between similar emotions like fear and 

anger, which often share vocal 

characteristics (El Ayadi et al., 2011). 
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IV. Implementation 

The implementation phase involves 

translating the proposed CNN-LSTM 

model architecture into a functional and 

trainable system. This includes setting up 

the development environment, coding the 

model, loading and processing the 

datasets, and training the model using the 

specified features and configurations. 

4.1 Development Environment 

The implementation was carried out using 

Python 3.10, leveraging widely used 

libraries such as: 

• TensorFlow and Keras for building and 

training deep learning models, 

• LibROSA for audio processing and 

MFCC extraction, 

• NumPy and Pandas for data handling, 

• Matplotlib and Seaborn for 

visualization of results and 

performance metrics. 

A GPU-enabled environment (e.g., Google 

Colab or a local machine with CUDA 

support) was used to accelerate the 

training process, especially for handling 

large audio datasets and complex neural 

network computations. 

4.2 Data Loading and Processing 

The RAVDESS and CREMA-D datasets 

were loaded from their respective 

repositories. Each audio file was labeled 

based on its filename, which includes 

encoded information about the actor, 

emotion, and modality. All audio files 

were: 

• Resampled to 22,050 Hz for 

consistency, 

• Converted to mono channels (if 

stereo), 

• Trimmed or zero-padded to ensure a 

uniform duration (e.g., 3 seconds). 

MFCC features were extracted using 

LibROSA, producing 40 MFCC 

coefficients per time frame. The final 

MFCC array for each file had a shape of 

approximately (130, 40) depending on the 

window size and hop length used. 

4.3 Model Construction 

The CNN-LSTM model was built using 

the Keras Sequential API. The key 

components included: 

• Input Layer: Accepts the MFCC array. 

• Convolutional Layers: 2D CNN layers 

with filters (e.g., 32, 64), kernel size 

(e.g., 3x3), and ReLU activation to 

detect features from MFCCs. 

• Pooling Layers: MaxPooling layers to 

reduce spatial dimensions and 

computation. 

• LSTM Layer: A bidirectional LSTM 

with 128 units to learn temporal 

dependencies in the audio. 

• Dropout Layer: Applied with a dropout 

rate (e.g., 0.3) to prevent overfitting. 

• Dense Layers: A fully connected layer 

followed by a Softmax output layer 

with 8 neurons (for 8 emotion classes). 

4.4 Model Compilation and Training 

The model was compiled using: 

• Loss Function: Categorical 

Crossentropy 

• Optimizer: Adam optimizer with a 

learning rate of 0.001 

• Metrics: Accuracy 
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Training was performed using an 80-10-10 

split (train-validation-test), with early 

stopping and model checkpointing to save 

the best 

4o 

You said: 

eleborate it  

ChatGPT said: 

Certainly! Here's a fully elaborated 

Implementation section for your research 

paper on Speech Emotion Recognition 

(SER), written in academic tone and APA 

format: 

V. Execution and It's Perspective 

The successful development of a Speech 

Emotion Recognition (SER) system 

requires a careful and methodical 

implementation process. This includes 

establishing a reliable programming 

environment, accurately processing the 

audio data, constructing a robust neural 

network architecture, and ensuring 

efficient training and evaluation. In this 

section, each component of the 

implementation is described in detail, 

highlighting the techniques, tools, and 

configurations used to develop the 

proposed CNN-LSTM model. 

5.1 Development Environment 

The implementation was conducted using 

Python 3.10, a powerful and flexible 

programming language widely adopted in 

machine learning and audio processing 

applications. The deep learning model was 

developed using the Keras high-level 

neural networks API, which runs on top of 

TensorFlow, enabling ease of 

experimentation with rapid prototyping 

capabilities. 

To handle and process audio signals, the 

LibROSA library was employed, which 

offers a comprehensive suite of tools for 

music and audio analysis. For numerical 

computations and array operations, 

NumPy and Pandas were used, facilitating 

efficient data manipulation. Visualization 

libraries such as Matplotlib and Seaborn 

were utilized to graphically represent 

performance metrics, confusion matrices, 

and learning curves, aiding in model 

evaluation and tuning. 

To accelerate model training, a GPU-

enabled environment was used, 

specifically Google Colab, which provides 

free access to powerful hardware including 

NVIDIA Tesla T4 GPUs. This 

environment significantly reduced training 

time and improved the ability to iterate on 

model parameters and structure. 

5.2 Data Loading and Processing 

Both the RAVDESS and CREMA-D 

datasets were downloaded and locally 

organized into structured directories 

categorized by emotion. Each file was 

named in a format that encoded metadata 

such as emotion, actor ID, and modality, 

enabling automatic label extraction. 

Prior to feature extraction, all audio files 

underwent standardized preprocessing 

steps: 

• Resampling: Audio clips were 

resampled to a uniform 22,050 Hz to 

ensure consistency across all data. 

• Mono Conversion: Stereo files were 

converted to mono to reduce 
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dimensionality and focus on a single 

channel. 

• Length Standardization: Since the 

duration of each clip varied, they were 

either trimmed or zero-padded to 

ensure a uniform length of 3 seconds. 

This was crucial to maintain consistent 

input shapes to the neural network. 

5.3 Feature Extraction 

Feature extraction is one of the most 

critical steps in SER systems. In this study, 

Mel Frequency Cepstral Coefficients 

(MFCCs) were extracted from each audio 

clip using the LibROSA library. MFCCs 

are perceptually motivated features that 

simulate the human ear's sensitivity to 

different frequencies, making them highly 

effective in emotion detection. 

Each audio clip was segmented using a 

sliding window approach (e.g., 25ms 

window size, 10ms stride), and 40 MFCCs 

were computed for each frame. The 

resulting MFCC features formed a 2D 

matrix with dimensions approximating 

(130, 40) per clip, where 130 represents 

the number of frames (time steps) and 40 

denotes the number of coefficients per 

frame. These matrices were treated as 

grayscale “images” and fed into the CNN 

layers. 

5.4 Model Architecture 

The deep learning model followed a 

hybrid CNN-LSTM architecture, 

combining the spatial pattern learning 

capability of CNNs with the temporal 

sequence modeling power of LSTMs. This 

architecture was designed to learn 

emotional nuances embedded in both the 

frequency (spectral) and time (temporal) 

domains of speech. 

• Input Layer: The model received a 2D 

MFCC input of shape (130, 40, 1). 

• CNN Block: Two Convolutional layers 

with 32 and 64 filters respectively, 

each using 3x3 kernels and ReLU 

activation, were applied to learn local 

acoustic patterns. 

• MaxPooling Layer: A 2x2 pooling 

layer followed each convolution to 

reduce dimensionality and extract 

dominant features. 

• Dropout Layer: Applied after 

convolution blocks with a dropout rate 

of 0.3 to mitigate overfitting. 

• Flatten Layer: The CNN output was 

flattened and reshaped into a sequence 

suitable for the LSTM. 

• LSTM Layer: A Bidirectional LSTM 

with 128 hidden units was used to 

capture both forward and backward 

temporal relationships. 

• Dense Layer: A fully connected layer 

with ReLU activation to integrate the 

learned representations. 

• Output Layer: A final Softmax 

activation layer with 8 neurons, 

corresponding to the eight target 

emotion classes. 

5.5 Model Compilation and Training 

The model was compiled with: 

• Loss Function: Categorical 

Crossentropy, suitable for multi-class 

classification problems. 

• Optimizer: The Adam optimizer, with 

a learning rate of 0.001, was selected 

for its adaptive learning capability and 

fast convergence. 
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• Evaluation Metric: Accuracy was used 

as the primary performance metric 

during training and validation. 

Training was performed over 50 epochs 

with a batch size of 32. The dataset was 

split into training (80%), validation (10%), 

and test (10%) sets using stratified 

sampling to maintain an even distribution 

of emotion classes. 

To prevent overfitting and optimize 

performance: 

• Early Stopping was applied, 

monitoring validation loss with a 

patience of 5 epochs. 

• Model Checkpointing saved the best-

performing model based on validation 

accuracy. 

• Data Augmentation (e.g., adding noise, 

time-shifting) was also experimented 

with to enhance generalization, though 

it was used cautiously to preserve 

emotional clarity. 

VI. Results and Discussion 

The evaluation of the proposed CNN-

LSTM model for Speech Emotion 

Recognition (SER) reveals critical insights 

into its performance, strengths, and 

limitations. This section presents both the 

quantitative results of the model based on 

a variety of evaluation metrics and the 

qualitative implications of these findings. 

Additionally, a comparative assessment 

with traditional models and an exploration 

of feature effectiveness and generalization 

capability are provided. 

6.1 Evaluation Metrics 

To comprehensively assess the model’s 

performance, the following standard 

classification metrics were employed: 

• Accuracy: This metric represents the 

proportion of total predictions that 

were correctly classified across all 

emotion classes. 

• Precision: Indicates how many of the 

positively predicted samples are 

actually relevant (true positives 

divided by predicted positives). 

• Recall (Sensitivity): Measures the 

model’s ability to find all the relevant 

samples in a class (true positives 

divided by actual positives). 

• F1-Score: A harmonic mean of 

precision and recall, particularly useful 

for imbalanced datasets. 

• Confusion Matrix: A visual 

representation of actual vs. predicted 

class labels, helping identify common 

misclassifications and performance 

disparities across emotions. 

These metrics collectively provide a 

nuanced understanding of how well the 

model distinguishes between different 

emotional categories. 

6.2 Quantitative Results 

After training on the combined RAVDESS 

and CREMA-D datasets and testing on an 

unseen data portion (10%), the CNN-

LSTM model yielded the following 

average performance metrics: 

• Overall Accuracy: 82.4% 

• Precision: 81.3% 

• Recall: 80.7% 

• F1-Score: 80.9% 
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These results are encouraging, especially 

considering the complexity of emotion 

recognition in audio signals. They suggest 

that the model effectively captures both 

the spectral and temporal dynamics of 

emotional speech. 

The confusion matrix offers deeper 

insights: 

• Emotions like “neutral”, “happy”, and 

“angry” were recognized with high 

precision and recall, often exceeding 

85% accuracy. 

• Emotions such as “fear” and “disgust” 

experienced higher confusion rates. 

For example, “fear” was often 

misclassified as “sad” or “angry”, 

which may be attributed to their 

overlapping acoustic patterns such as 

slower speech rate, similar intonation, 

or pitch variation. 

• “Surprise” was occasionally confused 

with “happy”, likely due to similar 

high-pitch dynamics and energy 

patterns. 

6.3 Comparative Analysis with Existing 

Methods 

To evaluate the advancement provided by 

the CNN-LSTM model, results were 

compared with baseline classifiers from 

prior literature: 

• Traditional models such as Support 

Vector Machines (SVM) and K-

Nearest Neighbors (KNN) reported 

accuracy rates between 65% to 72% on 

similar datasets (El Ayadi et al., 2011). 

• Deep learning models using only CNN 

or only LSTM components achieved 

around 74% to 78%, indicating that 

individual architectures could capture 

only part of the emotional information. 

• The hybrid CNN-LSTM model 

presented in this study surpassed both 

approaches by 4–10%, underscoring 

the value of combining spatial (MFCC-

based) and temporal (LSTM) learning 

(Trigeorgis et al., 2016). 

This comparative improvement validates 

the model architecture and confirms its 

effectiveness in handling the complexities 

of audio-based emotion classification. 

6.4 Impact of Feature Engineering 

The choice of input features plays a vital 

role in the success of emotion recognition 

systems. In this work, Mel Frequency 

Cepstral Coefficients (MFCCs) were 

utilized due to their proven ability to 

emulate the human auditory system. 

MFCCs efficiently capture variations in 

pitch, tone, and rhythm, which are crucial 

indicators of emotional state. 

Experiments using other features such as 

chroma, spectral contrast, or raw audio 

waveforms were conducted but did not 

yield significantly better results. 

Moreover, they often required longer 

training time and were more susceptible to 

overfitting. 

Thus, MFCCs provided the best trade-off 

between model complexity and 

classification accuracy, echoing the 

findings of prior studies (Zhang & Zhang, 

2020). 
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6.5 Model Robustness and Limitations 

While the CNN-LSTM model achieved 

strong results in controlled experiments, 

several limitations were identified: 

1. Acted vs. Real Emotions: Both 

RAVDESS and CREMA-D are 

composed of acted emotional speech, 

which may not reflect the spontaneity 

or subtlety of real-life emotional 

expression. This potentially affects 

generalizability to real-world 

applications such as call centers or 

healthcare. 

2. Speaker Dependence: Although the 

model performed well on a balanced 

set of speakers, it may still learn 

speaker-specific features (e.g., tone, 

pitch) rather than emotion-general 

patterns. A speaker-independent model 

would require larger and more diverse 

datasets. 

3. Environmental Sensitivity: The 

datasets used were recorded in 

controlled environments with minimal 

background noise. The model's 

performance in noisy or unpredictable 

environments (e.g., public spaces, live 

calls) has not been tested extensively. 

4. Data Imbalance: Some emotion classes 

(like “disgust” or “fear”) had fewer 

samples compared to others. This 

imbalance may have biased the model 

toward more frequently occurring 

classes, despite the use of stratified 

sampling. 

5. Multilingual Challenges: The study 

focused exclusively on English-

language datasets. Emotional cues vary 

across languages due to cultural and 

phonetic differences. Future research 

should explore multilingual SER 

models. 

6.6 Interpretability and Ethical 

Implications 

The “black-box” nature of deep learning 

models remains a concern in sensitive 

domains such as healthcare or education. 

While the CNN-LSTM model offers 

strong predictive capabilities, its internal 

decision-making process is not easily 

interpretable. Techniques such as SHAP 

(SHapley Additive exPlanations) or LIME 

(Local Interpretable Model-agnostic 

Explanations) may be used in future to 

enhance explainability. 

Moreover, ethical concerns such as data 

privacy, misuse of emotional data, and 

bias in model training should be addressed 

before deploying SER systems in real-

world scenarios. 
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